Elit-decor.ru

Элит Декор
351 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сравнение стеклопакетов по теплопроводности

Сопротивление теплопередаче стеклопакетов

Окна Проф >> Окна Донецк >> Cопротивление теплопередаче стеклопакетов: приведенное сопротивление теплопередаче окон

Наибольшие потери тепла в доме происходят через окна (до 40% от общего количества потерь). Основная утечка тепловой энергии происходит через стеклопакет — основной элемент конструктива окна. Сопротивление теплопередаче стеклопакетов — это количественный параметр, по которому можно проводить сравнение теплоизоляционных возможностей стеклопакетов.

Таблица сопротивления теплопередаче стеклопакетов

п/пЗаполнение светового проемаR0, м^(2)·°С/Вт
Материал переплета
Дерево или ПВХАлюминий
1Двойное остекление в спаренных переплетах0.4
2Двойное остекление в раздельных переплетах0.44
3Тройное остекление в раздельно-спаренных переплетах0.560.46
4Однокамерный стеклопакет ( два стекла ) :
обычного (с расстоянием между стекол 6 мм)0.31
с И – покрытием (с расстоянием между стекол 6 мм)0.39
обычного (с расстоянием между стекол 16 мм)0.380.34
с И – покрытием (с расстоянием между стекол 16 мм)0.560.47
5 Двухкамерный стеклопакет ( три стекла ):
oбычного (с расстоянием между стекол 8 мм)0.510.43
oбычного (с расстоянием между стекол 12 мм)0.540.45
с И – покрытием одно из трёх стекол0.680.52

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Показатель теплопередачи профильной системы

В ГОСТ 30673-99 указаны требования к энергоэффективности ПВХ конструкций:

  • 3-х камерные ПВХ профили — 0,6-0,69 (м2•°С)/Вт.
  • 4-х камерные ПВХ профили — 0,7-0,79 (м2•°С)/Вт.
  • 5-и камерные ПВХ профили более 0,80 (м2•°С)/Вт.

Так как на рамы со створками уходит приблизительно 30% от всей площади проема, коэффициент теплопередачи окна примерно на треть зависит от того, какие свойства имеет пластиковый профиль. На характеристики ПВХ конструкций влияет то, сколько камер имеет профиль, насколько толстыми являются внешние и внутренние стенки, присутствует ли армирование и на какую глубину установлены окна.

▼ Инертные газы в стеклопакете

Дальнейшее улучшение было достигнуто заменой воздуха (l = 0.025 Вт/(м·K), r = 1.23 кг/м³, при 10°C – стандартные условия по EN 673) газом, имеющим более низкую теплопроводность и большую объемную массу, что снижает конвекцию (затрудняет перемешивание).

Инертные газы имеют низкий коэффициент теплопередачи, значение Ug между 0.2 и 0.3 Вт/(м²K), и используются только в стеклопакетах, имеющих стекла с покрытием.

На практике, главным образом используется аргон (l = 0.017 Вт/(м·K), r = 1.70 кг/м³) и иногда криптон (l = 0.009 Вт/(м·K), r = 3.56 кг/м³).

Убеждать кого-то использовать стеклопакет, наполненный газом или нет, не стану. Тут уж Вы сами решайте — доверять новым технологиям или нет! По правилам, камеру наполняют на 90-95% . В год потери этого самого газа составляют не более 2%, т.е. пройдет около 19-20 лет прежде, чем в Вашем стеклопакете останется 50% от изначального объема. После чего можно снова произвести дозакачку на производстве. Надеюсь, что через 15 лет для дозакачивания не придется вынимать стеклопакеты и вести их на завод.

Чувство комфорта в любом помещении зависит не только от окружающей температуры, но также и от близости холодных поверхностей. Человеческое тело с температурой (кожи) приблизительно 28°C, отдает тепло, когда приближается к холодным поверхностям, таким как остекление с плохой теплоизоляцией. Возникает дискомфортное чувство холода. Использование энергоэффективного остекления не только ограничивает потери тепла, но и уменьшает чувство дискомфорта, вызванное близостью холодных поверхностей

Примечания

Низкоэмиссионные свойства стекла относятся к длинноволновому инфракрасному излучению; и напротив, почти не влияют на солнечное излучение. Следовательно, применяя энергоэффективный стеклопакет, можно улучшить теплоизоляцию и одновременно обеспечить высокий уровень поступления солнечной энергии.

Для обеспечения высоких показателей теплоизоляции и солнцезащиты одновременно, следует использовать другие типы покрытий, сочетающих эти две функции.

Об этих покрытиях расскажем Вам в следующих подтемах.

Сопротивление теплопередаче стеклопакетов

Для определения теплопередачи той или иной преграды используют формулу:

U = W/(S*T), где

W – мощность проходящего через преграду потока энергии, Вт;

S – площадь преграды, м²;

Изображение, демонстрирующее утечку тепла через окна по сравнению с утечкой через стены

T- разница температур за и перед преградой, при которой происходит отток тепла.

Физический смысл этой формулы прост. Она показывает мощность энергетического потока, покидающего помещение через преграду площадью 1 кв. м при разнице температур за и перед преградой в 1° С. Чем меньше величина U, тем лучше термоизоляционные свойства преграды.

Но эта формула не слишком удобна для пользователей. В особенности, для россиян, привыкших к тому, что «чем больше, тем лучше». Поэтому в оборот была введена величина, названная «сопротивление теплопередаче». Ее обозначают буквой R.

R = 1/U

Статья на нашем сайте «Теплое остекление фасада: мифы и трюки» расскажет вам о том, можно ли в действительности сделать масштабное остекление алюминиевым профилем тёплым

Как поменять холодное остекление балкона на теплое? Читайте в инструкции по адресу: https://oknanagoda.com/balkony-lodzhii/osteklenie/kholodnogo-ostekleniya-teplo.html

О раздвижных пластиковых окнах для балконных ограждений вам расскажет обзорный материал, посвященной теме остекления лоджий и балконов

На примере одного дома – разница между окнами с хорошей и плохой теплоизоляцией

Чем эта величина больше, тем, следовательно, лучше преграда, в частности, стеклопакет, сопротивляется оттоку тепла от помещения.

Часто для обозначения R используется термин коэффициент сопротивления теплопередаче стеклопакета. Это не совсем верно. Обычно, коэффициент – это безразмерная величина, показывающая соотношение двух параметров. Но к данному термину все привыкли и используют его в обиходе даже чаще, чем правильную формулировку: «сопротивление теплопередаче».

От чего зависит звукоизоляция окон

Применительно к стеклопакетам, звукоизоляция окон зависит от двух факторов: количества камер и их размеров. Из приведенных выше таблиц видно, что тройной стеклопакет ( у которого 3 стекла и 2 камеры ) обладает лучшими звукоизолирующими свойствами. Расстояние между стеклами ( дистанция ) так же влияет на шумоизоляционные характеристики, однако не стоит забывать, что при очень большой ширине камеры ( более 18мм) ухудшаются тепловые показатели. Гораздо эффективнее другой способ — изготавливать стеклопакет с двумя камерами разной ширины. Если ширина окнного профиля позволяет, можно установить стеклопакет с более толстыми стеклами ( 5 или 6 миллиметров), а наполнение камер инертным газом ( как правило, используется аргон) сделает Ваши окна максимально бесшумными. Правда, такая модернизация увеличивает стоимость окна почти втрое. И второй момент — подобная конструкция становится значительно тяжелее, что недопустимо в некоторых случаях, таких например, когда створка окна или балконная дверь очень широкие ( более 90 см).

Теплоизоляционные преимущества дерева

Деревянные окна выполнены из евробруса который распиливается по определенной геометрии. Это нужно не только для сохранения природного рисунка, но и для повышения прочности, а также эластичности рам и створок. Евробрус склеивается из трех ламелей разного распила или даже разных пород дерева. Профиль получается эластичным, не подверженным деформации при перепадах температур, сохраняющим природные свойства теплоснабжения.

Почему деревянные окна теплые:

  • деревянные конструкции имеют ступенчатое прилегание створки (лучше теплоизоляция), пластиковые — бесступенчатое;
  • у деревянных рам есть тепловая инерция, их температура при изменении среды меняется не сразу;
  • деревянная рама более широкая, поэтому ее теплосопротивление выше;
  • деревянный брус не содержит металлических включений, поэтому может свободно крепиться к проему при помощи металлического крепежа без нарушения теплотехнических показателей;
  • клеевой способ изготовления деревянного бруса предотвращает появление щелей.
Читать еще:  Как перевести стеклопакеты в зимний режим

Отличия одно-, двух- и трехкамерных стеклопакетов — какие лучше?

Камера — пространство между стеклами. В обычных стеклопакетах такое пространство заполнено сухим воздухом. Для отвода лишней влаги в конструкции дополнительно используют силикагель. А чтобы повысить теплоизоляционные свойства окна, межстекольное пространство заполняют безопасным для здоровья человека инертным газом.

Однокамерный стеклопакет

Стандартное окно состоит из двух стекол толщиной до 7 миллиметров. Расстояние между стеклами не превышает 1,6 сантиметра.

Преимущества однокамерных стеклопакетов:

  • Небольшой вес. Квадратный метр конструкции со стеклом толщиной 4 миллиметра весит 20 кг. Двух- и трехкамерные стеклопакеты весят в два раза больше.
  • Незначительная нагрузка на раму, фурнитуру, опоры.
  • Подходят для установки на северной и западной сторонах комнаты. Светопропускание составляет до 85%.
  • Доступная стоимость. Покупка однокамерного стеклопакета обойдется до 20% дешевле, чем многокамерного.
  • Простой и быстрый монтаж за счет небольшого веса и ширины самой камеры.

При покупке однокамерных стеклопакетов обращайте внимание на такие особенности:

  • Низкое сопротивление теплопередачи. Установив окно с одной камерой, не стоит надеяться на эффективное сохранение тепла.
  • Минимальная звукоизоляция — до 24 дБ. Окно подойдет для частного дома, удаленного от дороги, и других жилых построек. Для квартиры / дома, расположенного рядом с оживленной улицей, понадобится многокамерное окно.
  • Минимальная устойчивость к воздействию ветра. Однокамерный стеклопакет не подойдет для высотных зданий.

Где используется: дачи, лоджии, балконы, хозпостройки и неотапливаемые помещения.

Двухкамерный стеклопакет

Стандартная конструкция включает три стекла и два межстекольных пространства. Стекла устанавливаются на определенном расстоянии — зависит от желаемого уровня тепло- и звукоизоляции.

Преимущества двухкамерных стеклопакетов:

  • Высокий коэффициент сопротивления теплопередачи. Окна эффективно препятствуют проникновению холода в комнату и хорошо удерживают тепло, что снижает затраты на отопление.
  • Звукоизоляция от 29 дБ при толщине внешнего стекла 4 миллиметра. При такой шумоизоляции уличные шумы всегда приглушенные. Если толщина стекла 6 миллиметров, то звукоизоляция возрастает в два раза.
  • Уровень светопропускания — 77%. В комнате будет комфортно и всегда достаточно солнечного света.
  • Для установки двухкамерного пакета понадобится помощь только двух мастеров.
  • Высокое качество конструкции.
  • Оптимальная стоимость.

Заказывая двухкамерные пакеты для окон, обратите внимание на следующие особенности:

  • Многокамерные конструкции весят в 1,5-2 раза больше, чем однокамерные. Это влияет на требования к фурнитуре, надежности крепежных элементов и прочности рамы. Если не будут учтены высокие требования, то поворотно-откидные системы и крепежи быстро выйдут из строя.
  • Многокамерные пакеты пропускают на 10-12% меньше солнечных лучей, чем однокамерные.
  • Окна с несколькими камерами не подходят из-за большой толщины конструкции для установки в домах с тонкими стенами.
  • Стоимость двухкамерных стеклопакетов до 15% выше, чем на стандартные однокамерные.

Где используются: отапливаемые помещения, квартиры, дачи, коттеджи, офисы, административные и общественные объекты.

Благодаря высокой энергоэффективности и шумоизоляции возможна установка многокамерных стеклопакетов из эмиссионных стекол или с большей толщиной. Такая конструкция легко адаптируется под определенные требования — ее можно утеплить или повысить звукоизоляцию.

Трехкамерный стеклопакет

Стандартное многокамерное окно состоит из четырех стекол, разделенных дистанционной рамкой. Толщина стекол может различаться, быть одинаковой. В таких оконных системах используют три камеры.

Плюсы трехкамерного стеклопакета:

  • Оконная система из трех камер обладает самым высоким коэффициентом сопротивления теплопередаче. Окно в два раза эффективнее защищает помещение от потери тепла, чем однокамерное, и до 25% эффективнее, чем двухкамерное.
  • При необходимости можно увеличить ширину камер и использовать энергосберегающие стекла, что повысит сопротивление теплопередаче еще на 30%.
  • Превосходные звукоизоляционные свойства. Установив такие окна, вы не услышите шум проезжающего автомобиля. Звук поезда, трамвая или высокочастотные шумы будут практически не различимы.
  • Возможность снизить затраты на отопление. Тройные стеклопакеты отлично подходят для использования в северных регионах.
  • Минимальный риск появления конденсата.

Несмотря на весомые плюсы, такие оконные системы имеют особенности, которые следует учитывать при покупке и последующей эксплуатации:

Светопропускание составляет всего 65%.

  • Толщина оконной конструкции — от 640 миллиметров. Такие окна не подходят для домов с тонкими стенами.
  • Большой вес. Квадратный метр конструкции весит 40 килограмм. Отсюда возникают ограничения по габаритам.
  • Высокая стоимость — до 50% выше, чем на двухкамерные оконные системы.
  • Повышенные требования к фурнитуре, прочности проемов и крепежей.

Сфера применения: отапливаемые помещения зданий различного назначения. Оптимальное решение — северные и заполярные регионы. Для широт с умеренным климатом установка окон с тремя стеклопакетами нецелесообразна.

Величина Ug, которую применяют в зарубежных технических условиях на стеклопакеты [3], является коэффициентом теплопередачи центральной части стеклопакета без учета краевых эффектов на его кромках. Эти краевые эффекты обычно заключаются в более низких теплозащитных характеристиках кромок по сравнению с характеристиками центральной части.

Обычно коэффициент теплопередачи Ug применяется для описания остекления, которое располагается вертикально. Установка стеклопакета наклонно меняет механизм конвективного теплообмена внутри стеклопакета и поэтому может значительно снижать его величину. Чем больше наклон стеклопакета, тем быстрее происходит циркуляция воздуха в его внутренней полости и тем более снижается его коэффициент теплопередачи (рисунок 5).


Рисунок 5 – Влияние ориентации стеклопакета
на коэффициент теплопередачи Ug:

90º: Ug = 1,1 Вт/(м 2 ·К);
45º: Ug = 1,6 Вт/(м 2 ·К);

Теплоизоляционные характеристики стекла. Теплопередача и теплопроводность

2.4.1 Прохождение тепла через остекление

Разница в температуре между двумя точками любого тела вызывает перенос тепла от горячей точки к холодной.

Теплопроводность происходит различными путями:

  • теплопередача, т.е. внутри самого материала. Тепло передается последовательно от одной молекулы к другой, например, когда металлический стержень прогревается весь при нагревании с одного конца
  • конвекция в жидкостях и газах. Разность температур создает разницу в плотности. Молекулы из более легких теплых участков поднимаются вверх, в то время как холодные массы движутся в противоположном направлении; эти перемещения приводят к выравниванию температур, например, так происходит при нагревании кастрюли с водой
  • излучение: любое нагретое тело испускает энергию в форме электромагнитного излучения.

Оно пересекает область, прозрачную для волн; но когда волны встречают препятствие, они отдают часть своей энергии препятствию, которое в свою очередь испускает тепло. Этот путь переноса тепла работает и в вакууме, например, в случае солнечного излучения или электрической лампочки.

Конструкция стеклопакета позволяет ограничить потерю тепла путем теплопередачи через стекло благодаря наличию между двумя стеклами изолирующего пространства, заполненного осушенным воздухом или инертным газом.

Фундаментальные механизмы теплопередачи через остекление (в случае, когда наружная температура ниже температуры в помещении)

2.4.2 Теплопередача и теплопроводность

Вводная информация

Плотность теплового потока q (Вт/м 2 ) в секунду, проходящего через остекление из теплой среды в холодную, определяется следующейформулой:

где Θi и Θе температуры воздуха внутри и снаружи помещения

• R сопротивление теплопередаче остекления м.2 K/Вт

• U = 1/R коэффициент теплопередачи остекления Вт/(м2К)

Коэффициент теплопередачи U (ранее k)

Определяет количество тепла, прошедшее через остекление, в установившемся режиме через единицу площади поверхности при разнице температур воздуха по разные стороны в 1°C.

Количество тепла в секунду Q (Вт), проходящее через остекление площадью поверхности S (м2) из теплой атмосферы в холодную составляет, соответственно:

Читать еще:  Размер стеклопакетов стандарт

Для твердого изотропного вещества сопротивление теплопередаче R определяется как отношение его толщины e (м) к теплопроводности λ Вт/[м 2 при разнице температур между поверхностями в 1°C.

Теплопроводность стекла составляет 1 Вт/(мK). Оно не является теплоизоляционным материалом. Теплоизоляционным считается материал с коэффициентом теплопроводности менее 0,065 Вт/(мK).

2.4.3 Различные типы изолирующего остекления

Стандартный однокамерный стеклопакет

Стандартный однокамерный (двойной) стеклопакет изготовлен из двух листов стекла с дистанционной рамкой и полостью, заполненной осушенным воздухом. Поскольку воздух обладает теплопроводностью 0,025 Вт/(мК) (при 10 0 C), при этом теплопроводность стекла равна 1,0 Вт/(мК), воздушная прослойка улучшает термоизоляционные свойства и снижает коэффициент Ug остекления.

Однокамерный стеклопакет: ориентация компонентов и количество сторон

Поверхности однокамерного стеклопакета обычно нумеруют цифрами от 1 до 4 (снаружи внутрь), а для двухкамерного — от 1 до 6.

Определенного улучшения можно достичь посредством замены осушенного воздуха в полости (λ = 0,025 Вт/(мК), ρ = 1,23 кг/м 3 , при 10°C, т.е. при обычных условиях, описанных в стандарте EN 673) на теплоизоляционный газ, обладающий более низкой теплопроводностью, а также большей объемной массой для снижения конвекции (затрудняет перемешивание).

Теплоизолирующие газы снижают коэффициент Ug изолирующего стеклопакета на 0,2-0,3 Вт(м 2 K) и применяются исключительно в сочетании с низкоэмиссионными покрытиями. Таким образом достигается максимальное значение теплоизоляционных показателей.

На практике при производстве изоляционного стекла используется аргон (λ= 0,017 Вт/(мК), ρ = 1,70 кг/м3).

Стеклопакеты повышенной эффективности

Технологический прогресс, достигнутый в производстве высокоэффективных изоляционных покрытий играл ведущую роль в выводе на рынок целой линейки высокоэффективного изоляционного остекления.

Эти высокоэффективные теплоизоляционные покрытия называются низкоэмиссионными покрытиями (или low-e покрытиями) и представляют собой:

  • мягкие low-e покрытия, производимые магнетронным нанесением
  • твердые low-e покрытия, наносимые непосредственно на линии в процессе выпуска флоат-стекла.

Свойства низкоэмиссионного покрытия:

  • Нейтральный внешний вид
  • Высокая прозрачность (высокий уровень светопропускания)
  • Высокий уровень цветопередачи

Для сочетания теплоизоляционных и солнцезащитных свойств необходимо использовать иные типы покрытий, объединяющих обе эти функции.

AGC не рекомендует устанавливать на одной стене стандартные и высокоэффективные стеклопакеты по причине незначительного различия оттенков (связанного с наличием низкоэмиссионного покрытия), способного повлиять на внешний вид остекления в отраженном свете при определенных условиях.

По умолчанию низкоэмиссионное покрытие располагается на поверхности 3 (в позиции 3) однокамерного стеклопакета. Также возможна установка в позицию 2.

Низкоэмиссионное остекление

Стандартная алюминиевая дистанционная рамка может заменяться на на теплоизолирующую рамку («теплый край»). Теплоизоляционные свойства рамки «теплый край» значительно превосходят показатели стальных или алюминиевых рамок.

Использование дистанционной рамки («теплый край») не влияет на коэффициент теплопередачи стеклопакета Ug (соответствующий коэффициенту U, замеренному в центре стеклопакет в соответствии с EN 673), но влияет на коэффициент теплопередачи окна Uw, определяющий теплопотери окна в целом.

Энергоэффективные двухкамерные стеклопакеты

Теплоизоляция возрастает благодаря наличию инертного газа в межстекольном пространстве, теплоизоляционной рамки, а так же при добавлении камеры.

В двухкамерном стеклопакете, благодаря наличию второй камеры (дополнительного теплоизоляционного слоя), Ug обычно составляют от 0,5 до 0,7 Вт/(м 2 К), в зависимости от использованной конструкции (типа покрытий, газа, толщины дистанционной рамки и т.п.).

Компоненты и процессы, используемые для производства двухкамерных стеклопакетов аналогичны компонентам и процессам в производстве однокамерного остекления. В частности, применяется low-e покрытие, располагающееся обычно в позициях 2 и 5. Солнцезащитные свойства могут быть достигнуты путем использования соответствующих покрытий.

Основными недостатками двухкамерных стеклопакетов является их толщина, масса, пониженное светопропускание и общее пропускание солнечной энергии, связанные с увеличенным количеством листов стекла.

В связи с высоким уровнем теплоизоляции двухкамерных стеклопакетов рекомендуется проводить анализ риска термошока, особенно для среднего стекла.

Как и в случае с однокамерными стеклопакетами можно использовать дистанционные рамки «теплый край» для улучшения общих теплоизоляционных показателей.

2.4.4 Температура остекления и комфорт

Чувство комфорта в любом помещении зависит не только от окружающей температуры, но также и от близости холодных поверхностей. Человеческое тело с температурой (кожи) приблизительно 28°C отдает тепло, когда приближается к холодным поверхностям, таким как остекление с плохой теплоизоляцией. Возникает дискомфортное чувство холода.

На графике ниже приведены значения температуры внутренней поверхности одинарного остекления и различных типов стеклопакетов при наружной и внутренней температуре 0°C и 20°C соответственно (в стационарных условиях).

Видно, что использование энергоэффективного остекления не только ограничивает потери тепла, но и уменьшает чувство дискомфорта, вызванное близостью холодных поверхностей.

Изменение температуры внутренней стороны остекления зависит от значения коэффициента Ug

2.4.5 Конденсат на поверхности изоляционного остекления

На поверхности остекления могут возникать три типа конденсации:

  • поверхностная конденсация с внутренней стороны (поверхность 4 однокамерного стеклопакета / поверхность 6 двухкамерного стеклопакета): возникает при повышенной относительной влажности внутри помещения и/или низкой температуре внутренней поверхности остекления. При нормальных условиях внутри помещения (отапливаемое здание без отдельных источников влажности) подобный тип конденсации редко проявляется при использовании высокоэффективного изолирующего остекления
  • поверхностная конденсация на наружной стороне (поверхность однокамерного или двухкамерного стеклопакета): подобная конденсация может иногда возникать на рассвете на высокоэффективных изолирующих стеклопакетах, но только после ясной ночи при практически полном отсутствии ветра. В таких условиях, принимая во внимание повышенные теплоизоляционные свойства изолирующих стеклопакетов, наружный лист стекла остывает настолько, что на внешней поверхности выпадает конденсат. Это явление носит временный характер и подтверждает эффективность остекления
  • конденсация внутри стеклопакета: она указывает на дефект стеклопакета, поскольку он более не обеспечивает герметичности от пара и влаги.

Если влагопоглотитель утрачивает эффективность или герметик теряет герметичность, внутри стеклопакета образуется конденсат, и требуется замена стеклопакета.

Какие пластиковые окна теплее и почему?

Как выбрать «тёплое» окно

От чего же зависит «теплота» окна? В Европе принято оперировать коэффициентом теплопередачи, у нас в России – коэффициентом сопротивления теплопередаче. Как вы поняли, это две разнонаправленные величины. По российским меркам, чем больше сопротивление теплопередаче, тем окно теплее.

О том, как выбрать «теплое» окно, и чем этот параметр определяется, мы расспросили руководителя технического центра светопрозрачных конструкций компании REHAU Антона КАРЯВКИНА.

Почему горячий чай лучше не перемешивать

От чего же зависит коэффициент сопротивления теплопередаче? В первую очередь, от сложности профильной системы – чем толще профиль (он бывает толщиной 60,70,80, 86 мм), тем теплее окно.

Второй важный фактор – устройство стеклопакета. Стеклопакет – это часть окна, если посмотреть на окно в разрезе (такие модели в виде половинок или даже уголков часто встречаются у продавцов окон), можно увидеть несколько стёкол, соединённых между собой так называемыми «дистанционными рамками» из алюминия или пластика, герметизированными по всему контуру.

Стеклопакеты бывают одно- и двухкамерные. Если делать их из одинаковых стёкол, двухкамерные стеклопакеты теряют гораздо меньше тепла, чем однокамерные. В последнее время заговорили о трёхкамерных стеклопакетах – в качестве эксклюзива такие можно изготовить, но промышленным способом их пока не выпускают. Очень сложная технология.

Несмотря на видимую простоту, устройство стеклопакетов также сильно влияет на свойства окна противостоять потерям тепла. Речь идет о так называемых конвективных теплопотерях. Внутри стеклопакета не вакуум, как почему-то думают некоторые люди, а газ. Это либо высушенный воздух, либо инертные газы: аргон, криптон, ксенон. Почему инертные газы иногда используются вместо воздуха? Объяснение простое: у воздуха объемная масса больше, а его движение под действием тепла более интенсивное. Соответственно, воздух более интенсивно перемещается – как если бы вы в чашке перемешивали горячий чай – остывание в этом случае происходит быстрее.

Читать еще:  Как проверить энергосберегающий стеклопакет

Конвекция инертных газов внутри стеклопакета происходит медленнее. Соответственно, инертный газ внутри стеклопакета более предпочтителен – уменьшаются конвективные теплопотери. А значит тепло такие окна держат лучше.

Ещё один, третий, путь снижения теплопотерь и увеличения сопротивления теплопередаче – применение энергоэффективных стёкол со специальным покрытием. На поверхность стекла магнитронным способом наносятся оксиды металлов. Это очень тонкая оксидная плёнка, всего несколько микрон, её не видно невооруженным глазом.

У каждой компании, производящей энергосберегающие стёкла, своё ноу-хау, свой состав оксидной плёнки, своя технология нанесения.

Часто здесь используется оксид серебра или титана. Свойство этой оксидной плёнки таково, что часть теплового спектра экранируется, не выходит наружу.

Итак, «теплоту» окна определяют четыре фактора: сложность профилей, количество камер в стеклопакете, вид газа внутри стеклопакета и наличие энергосберегающих стёкол.

«Теплый край» сделает окно теплее

Могут применяться и дополнительные меры, помогающие сделать окно теплее. Среди них выделяют специальные дистанционные рамки — так называемый «теплый край».

При производстве стеклопакетов можно использовать дистанционные рамки из алюминиевых сплавов. Чтобы дополнительно утеплить стеклопакет, можно использовать композитные рамки. При заказе окон нужно отдельно оговорить эту опцию, т.к. если окна изготовлены, дооснастить их уже не удастся.

Правда, есть определенные ограничения по толщине такой дистанционной рамки. Если брать однокамерный стеклопакет, то 16 мм — это её оптимальная толщина – при большей толщине возникают сильные конвективные потери (тот самый эффект «размешиваемого чая»). Напомним, на конвективную составляющую влияет тип газа и расстояние между стёклами.

Как рассчитать класс сопротивления теплопередаче

Существует классификация окон по сопротивлению теплопередаче.

— Есть ГОСТ за номером 23166 редакции 1999 года. В нём закреплено 8 классов по сопротивлению теплопередаче, которые должны использоваться для разных типов зданий и климатических условий, — рассказывает руководитель технического центра светопрозрачных конструкций компании REHAU Антон Карявкин.

Можно ориентироваться на нормативы по градусо-суткам отопительного периода (ГСОП). Это сложная величина, ею принято оперировать не только в России, но и во всём мире. Она связана с продолжительностью отопительного сезона, который в Москве составляет 205 суток, а где-нибудь в Сочи – всего 94. Здесь учитывается и температура, которая чаще всего бывает в холодный период в том или ином регионе — речь идёт о температуре наиболее холодной пятидневки.

Существует формула, по которой рассчитывается требуемый класс сопротивления теплопередаче. Для Москвы это около 5,5 тысяч ГСОП. Для южных регионов – это порядка 3-х тысяч ГСОП, а для районов Крайнего Севера – 8 тысяч ГСОП и более.

— А существует ли какая-то классификация в зависимости от назначения помещения: для школы, больницы, жилого здания? — интересуемся у Антона Карявкина.

— Есть такой стандарт, СП 50.13330.2012, в котором устанавливается нормирование по типам зданий, где учитывается и такая характеристика, как сопротивление теплопередаче, — просвещает нас наш спикер.

Наиболее дискутируемыми на сегодня являются нормативы по сопротивлению теплопередаче для жилых помещений.

Дело в том, что на уровне федеральных стандартов в новой редакции СП 131.13330.2012 «Строительная климатология» изменились нормативные требования. Учёные провели исследования и заявили: в Москве стало теплее. В итоге на сегодняшний день нормативное сопротивление теплопередаче для окон жилых зданий в Москве – 0,49 м²°С/Вт, до изменений нормативной базы по федеральным нормам было 0,52 м²°С/Вт, по территориальным (МГСН) – 0,54 м²°С/Вт.

— А для школ и больниц более жесткие требования? – уточняем мы.

— Ненамного. Там при расчёте берется температура наиболее холодной пятидневки другой обеспеченности. Для жилых зданий — 0,92, а для детских садов, школ и больниц – 0,98, — разъясняет наш собеседник. — В итоге требуемое сопротивление теплопередаче 0,51 м²°С/Вт.

Надо сказать, что в окнах, выпускаемых современными производителями, требуемые значения по сопротивлению теплопередаче достигаются очень легко.

Допустим, если взять даже самую простую оконную системукомпании REHAU– BLITZNew, то у неё сопротивление теплопередаче пакета профилей — 0,7м²°С/Вт. Любые более совершенные системы, выпускаемые той же компанией REHAU – GRAZIO, DELIGHT-Design,BRILLANT-Design, а уж тем более «топовые» INTELIOили GENEO, уже в разы перекрывают эти требования. Например, у GENEO этот коэффициент — 1,05м²°С/Вт. То есть, имеется даже запас по сопротивлению теплопередаче.

Почему отраслевые значения выше федеральных?

В Европе точно так же есть федеральные требования по теплопередаче, они примерно такие же, как у нас. Но есть ещё и отраслевой стандарт. Это те значения, которые установлены в отрасли. Обычно они значительно выше, чем федеральные. У нас таких «отраслевых» нормативов нет.

Зачем нужны такие «отраслевые» значения? За рубежом энергия – и вообще теплоносители – очень дорогие. Это, во-первых. Во-вторых, в европейских странах существует немало различных регуляторов – от самого государства до общественных союзов, объединений и т.д., — которые контролируют политику энергосбережения. Поэтому там, как говорится, не забалуешь.

В Европе оконная отрасль, действительно, саморегулируемая. Есть регулирование по энергоэффективности, качеству, и даже цена продукции и услуг автоматически выходит на определённый, «не зашкаливающий» уровень, при том, что рентабельность оконного бизнеса по-прежнему остаётся на вполне достойном уровне.

В Европе низкую теплопередачу стимулирует государство, у нас это пока только благие пожелания

Во многих европейских странах работа компаний над улучшением теплотехнических показателей окон стимулируется государством. У нас это пока никак не поощряется.

— В Европе, если вы строите дом, закладываете современные системы, выходите на прогнозируемый уровень потребления энергетических ресурсов, то, в первую очередь, получаете какие-то льготы по налогообложению, — поясняет Антон Карявкин. — У нас это, увы, пока записано в виде благих пожеланий. Реальных механизмов нет.

Не секрет, что в России, «на ниве теплотехники», существует некий конфликт интересов. Ресурсники не заинтересованы во внедрении теплосберегающих технологий, наоборот, рады, когда потребитель больше потребляет и больше платит.

Теплотехника: как учесть всё

На что же всё-таки ориентироваться потребителю, если хочется, чтобы дом был, ну если уж не «пассивным», как в Германии, то энергоэффективным? Какие параметры могут уменьшить плату за отопление?

— Я бы посоветовал поработать с квалифицированным проектировщиком, который сможет дать внятные прогнозы по теплосбережению, — консультирует нас наш собеседник. — Желательно, чтобы они были основаны не просто на каких-то теоретических представлениях, а на опыте работы.

Самостоятельно в теплотехнических характеристиках будет разобраться сложновато. Можно что-то упустить. Вы будете пытаться учесть теплотехнику и не примете во внимание, что возможен перегрев помещения в летнее время. Подобная ошибка может привести к тому, что та экономия, которую вы получили зимой, «вылетит в трубу». Её съест кондиционирование.

Подготовила Елена ВДАДИМИРОВА

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector